MATH 579 Exam 3 Solutions

1. (5-8 points) How many solutions to $w+x+y+z=20$ are there, where w, x, y, z are positive integers?

Set $w^{\prime}=w-1, x^{\prime}=x-1, y^{\prime}=y-1, z^{\prime}=z-1$. Then the problem is equivalent to $w^{\prime}+x^{\prime}+y^{\prime}+z^{\prime}=16$, where $w^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ are nonnegative integers. This last problem has solution $\left(\binom{4}{16}\right)=\binom{19}{16}=969$.
2. (5-10 points) How many four-digit positive integers have all four digits different?

9 choices for the thousands digit (not zero), 9 choices for the hundreds (can't repeat), 8 choices for the tens (can't repeat), 7 choices for the units. Hence $9^{2} \cdot 8 \cdot 7=4536$ altogether.
3. (5-10 points) How many four-digit positive integers have the sum of their digits at most 33 ?

There are 9000 four-digit positive integers. We will count how many have sum at least 34 . They must be permutations of 9999 , 9998, 9997, 9988, which have $\binom{4}{0}=1,\binom{4}{1}=4,\binom{4}{1}=$ $4,\binom{4}{2}=6$ permutations respectively. Hence 15 integers have sum that is too large, so our answer is $9000-15=8985$.
4. (5-10 points) How many four-digit positive integers contain the digit 9 and are divisible by 3 ?

There are 9000 four-digit positive integers, of which 3000 are divisible by 3 . We will count how many do NOT contain the digit 9 , then subtract. We have 8 choices for the thousands digit, 9 for the hundreds, 9 for the tens. Then, to make the result divisible by 3 , we need to make the sum divisible by 3 . That means we must choose from $\{0,3,6\}$ or $\{1,4,7\}$ or $\{2,5,8\}$, depending on the total so far; but in any case there are 3 choices. Hence there are $8 \cdot 9^{2} \cdot 3=1944$ not containing 9 . Combining, we have $3000-1944=1056$.
Note: This problem would be much harder if we required the digit 8 rather than 9 .
5. (5-12 points) How many surjective functions are there from [6] to [5]?

Some two domain elements must map to the same value; there are $\binom{6}{2}=15$ ways to choose those two. Now, we have five domain elements (one of which is a double) and five codomain elements, hence any surjective function must be in fact a bijection and there are $5!=120$ such. Combining, we have $15 \cdot 120=1800$ surjective functions.
Note: This problem would be harder if we made the codomain smaller.

